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A transport equation has been derived for a mixture of non-Newtonian liquids 
showing power-law flow; the optimum separation conditions in a thermal-diffusion 
column in the presence of parasitic convection have been defined. 

Thermal diffusion is used in separating and purifying isotropic and molecular mixtures, 
including oils, petroleum products, and solutions of polymers and other substances that con- 
stitute non-Newtonian liquids [1-3]. On the other hand, calculations on such columns and 
processing of results from such preparations are performed by means of the classical Jones-- 
Furry theory [4], which does not incorporate the nonlinear viscosity. Here we consider the 
separation of liquids having Ostwald power-law rheology [5], which applies for a wide class 
of substances. 

Consider the separation of a binary mixture of non-Newtonian liquids in a planar column 
of height L having a working gap of 2d with d << L, with the column closed at both ends. The 
left-hand wall is kept at temperature Tx and the right-hand wall at T=, with T~ < T=. The 
flow in the working gap is represented by negligible values of the transverse velocity com- 
ponent and temperature homogeneity in the longitudinal direction [6]. Then the following are 
the differential equations for the two-dimensional problem in (x, z) coordinates, which de- 
scribe the quasistationary separation of these liquids in this thermal-diffusion column: 
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The parameters k, n, B, p, D, ~ in (i) are assumed to be constant and to be calculated 
for the average values of the temperature, pressure, and concentration. 

The boundary conditions are: 
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The solution to the thermal-conduction equation is 

T=To+O--X . (3) d 
The dimensionless speed of the mixture u = v(0gBodn+Xk-l)-I/n is given by the following 

equation [7]: 
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TABLE i. Values for the Constant of Integration A, Dimension- 
less Mean Speed u, and Integrals ~(n) and ~(n) 

n a ~ w(n) ~(n) 

0,5 
0,6 
0,7 
0,8 
0,9 
1,0 
1,1 
1,2 
1,3 
1,4 
1,5 
1,6 
1,7 

0,1862 
0,1810 
0,1766 
0, 1728 
0, 1695 
0, 1667 
0,1641 
0,1620 
0,1600 
0, 1582 
0,1566 
0,1551 
O, 1538 

8,106.10-n 
1,386.10- : 
2,045.10-: 
2,746.10--0 
3,458.10-: 
4,167.10 --~ 
4,858.10-: 
5,528.10-~ 
6,171.10-: 
6,786.10 -z 
7,363.10-: 
7,919.10-" 
8,446.10-: 

4,393. I0- ~ 
7,491. I0- ~ 
1,101.10-: 
1,474.10- 2 
1 , 8 5 1 . 1 0 - "  
2,222. lO -z 
2 , 5 8 4 . 1 0 -  '~ 
2,933. I0 -z 
3,267.10 -2 
3,585.10-: 
3,879.10-" 
4,1,61.10-: 
4,426.10-: 

2,683.10 -s  
7,851.10 -s 
1,706.10 - I  
3,073.10 -4 
4,866. I0 - I  
7,052.10-4 
9,565.10 -4 
1,237.10-~ 
1,538.10- ~ 
1,857.10- 3 
2,182.10- :~ 
2,520.10 -s  
2,861.10 - 3  

where q = x/d; Table 1 gives the values calculated for A on the basis that the liquid adheres 
! 

to the wall, as well as the dimensionless mean speed ~=-[udT] as a function of the index n. 

The mean speed increases with n, but the shape of the velocity profile alters, while the flow 
is antisymmetrical about q = O. 

Integration of (i) subject to (2) by the method of [6] gives the transport equation as 

dc 
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dz (5) 
where 
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Ka = 2pDBd. 
Table i gives the values of the integrals ~(n) and ~(n) computed for various values of n. 

If (5) is integrated with respect to z for the steady state (T = 0), we get an expres- 
sion for the separation factor q* for these non-Newtonian liquids : 

Y---- | n q * =  H___~L (6 )  

K c +  Ka " 
The separation factor is substantially dependent on the dimensions of the column; the 

maximum value for q* occurs for a certain optimum half-width do for the gap, and the condi- 

tion for the occurrence of this is 

K a -  3n q-__....~lKc" (7)  
n + l  

C o n d i t i o n  (7)  b e c o m e s  Kd = 2Kc f o r  N e w t o n i a n  l i q u i d s  [ 4 ] .  We c o m b i n e  (5)  and (7)  t o  g e t  an  

expression for the optimum width: 

do=[ n-{-] D 2 ] " ~n+2 (8) 
3n + ! (0g~Ok-i)2/"~ (n) 

These equations relate to an ideal colunm, whereas an actual system inevitably has para- 
sitic mixing on account of variations in the working gap over the length of the column and un- 
even heating in the azimuthal direction, etc. The separation factor in the presence of para- 

sitic convection becomes [6] 

1 + • 1 - -  2~ -F exp [(1 - -  x) Y] (9)  

1--• l + 2 • 2 1 5  

w h e r e  • c h a r a c t e r i z e s  t h e  e f f e c t  o f  t h e  p a r a s i t i c  c o n v e c t i o n  and i s  i n v e r s e l y  r e l a t e d  t o  t h e  
s e p a r a t i o n  f a c t o r .  The  e x p r e s s i o n  f o r  • f o r  n o n - N e w t o n i a n  l i q u i d s  i s  
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Fig. i. Logarithm of the separation 
factor at the optimum gap width as a 
function of n for the following values 
of k: i) k = i0-~; 2) 3 �9 i0-=; 3) 3 - 
10-3; 4) 10-2; 5) 3 i0 -~. 

u To ( 26T ~t / .  (I0) 
~: =~('0 0 _--6-I " 

As 6T << @, while u(n) is proportional to ~ (n), we have that n and z increase together. 
Therefore, if the liquids are pseudoplastic (n < i), the effects of the parasitic convec- 
tion are less important than are those for dilatant liquids (n > i), with Newtonian liquids 
occupying an intermediate position. In the case of Newtonian liquids (n = !, u = 1/24, ~ = 
1/45) (i0) becomes a standard relation [6]: 

-~ 15 To6T 
~ ( 2 e )  ~ 

It is best to operate a thermal-diffusion column with convective heating of the hot wall 
[6], and in that case the temperature variation in the azimuthal direction (temperature dif- 
ference ~T) is [8] given by 

6 T =  d (1 -5 2ds) '  (ii) 

where 

hJ~ =i 
s = l hj = ~  

~ ( h ~ +  ~ )  l + B i l  

Equations (5), (6), (9), (i0), and (ii) define the conditions for obtaining the maximum 
separation factor for such liquids in the presence of parasitic convection; the dependence of 
q on d, n, ~, and L was examined numerically by computer. The consistency parameter k char- 
acterizes the set of values typical for the restricted range in n employed here; in par- 
ticular, k was taken as constant for the various n, although the dimensions of the consistency 
parameter in the SI system are dependent on n. The other parameters were kept constant and 
took the following characteristic values: D = 10 -9 ma/sec; B = i0 ~3 deg-~; P = 103 kg/ma; 
0 = 50~ To = 350~ e = i0 -s m; s = 2 �9 i0 -~ m -I. The illustrations present the results. 

Figure 1 shows in qmax for the optimum gap width in relation to the flow index for 
various values of k and ~ = 0.i, L = 1 m. Figure 2 shows the optimum half-width as a func- 
tion of n for ~ = 0.i and L = 1 m. 

These results show that for small values of the consistency parameter (k < 0.3) the 
coefficients in the t~ansport equation are subject to the inequality K d << Kc; in that case, 
the mean flow speed v increases with n, which results in a fall in the separation factor Y 
for an ideal column. On the other hand, m tends to increase with n, and the overall result 
is an increase in q as n decreases. In the present case, the Optimum gap width is dependent 
on H, Kc, and x, and in particular do increases with the flow index. 

At higher values of the consistency parameter (k > 0.3), the increase in the frictional 
force tends to depress the circulation in the column, and in that case the maximum separation 
is attained on increasing the working gap, and further the optimum half-widthincreases as n 
decreases, with the limit set by the value given by (8). Therefore, separation of pseudo- 
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Fig. 2. Optimum gap half-width as a function of n for the follow- 
ing values of k: I) 10-I; 2) 3 �9 10-2; 3) 10-2; 4) 3 . lO-S; 5) 
10-s; 6) 3 �9 i0-~; 7) i0-~; do, i0 -~ m. 

Fig. 3. Ratio of the logarithms of the separation factors for 
pseudoplastic and New~onian liquids as a function of n for 2d = 
3 �9 i0 -4 m for the following values of k: i) i0-2; 2) 3 �9 10-s; 
3) i0 -S . 

plastic liquids having a high value for the consistency parameter is possible in a thermal 
diffusion column with little effect from the parasitic mixing: d is governed by H, Kc, and 
K d. The maximum separation factor as a function of n itself has a pronounced peak, which is 
defined by (7), and this peak shifts to higher values of n as the consistency parameter in- 
creases. 

The numerical study of the effects from thermal-diffusion constant a and column heigh~ 
L showed that the parasitic mixing has less effec~ as this constant increases and as L is 
reduced, which has been demonstrated previously [6] for Newtonian liquids. 

As a rule, molecular mixtures are usually separated by thermal diffusion in columns in 
which the working gap is 2d = 3 . 10 -~ m, i.e., not the optimal value; Fig. 3 shows the ratio 
of the logarithms of the separation factors for pseudoplastic and Newtonian liquids In qn/ 
in qz as a function of n as calculated for a column with 2d = 3 �9 10-~mandvariousvaluesof 
the consistency parameter. Clearly, pseudoplastic liquids are more readily separated by 
thermal diffusion than are Newtonian ones under otherwise equal conditions. 

NOTATION 

v, longitudinal velocity component; P, pressure; T, absolute temperature; To = (Tz + 
T2)/2, mean temperature of mixture; c, concentration; g, gravitational acceleration; 8 = -- 
(1/O)(3p/3T), thermal expansion coefficient; k, consistency index; n, flow index; D, diffu- 
sion coefficient; a, thermal-diffusion factor; 0 = (T2 -- Tz)/2; u, dimensionless velocity; 
u, dimensionless mean velocity; x, horizontal coordinate; z, vertical coordinate; ~, longi- 
tudinal flow of lighter component; H, Kc, and Kd, coefficients in (5); q*, separation coef- 
ficient for an ideal column; q, separation coefficient for a column with parasitic convec- 
tion; Y = inq*; • parasltic-convection parameter; 6T, azimuthal temperature difference; B, 
slot width; c, mean deviation from normal gap width; ~, thermal conductivity of mixture; ~j, 
heat-transfer coefficients for thermostatic surfaces (j = i, 2); Bij = ~j~j/~j, 6j; ~j, wall 
thickness and thermal conductivities. 

i, 
2. 
3. 
4. 

. 
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